Desenvolvida por Henry Philibert Gaspard Darcy e aprimorada por Julius Ludwig Weisbach nos anos de 1840, a equação de Darcy-Weisbach é usada para calcular a perda de energia (ou perda de carga) do escoamento do fluido de um ponto para outro no interior de uma tubulação. Essa equação é dada por:
Sendo:
- Lw = perda de carga ao longo do comprimento do tubo;
- f = fator de atrito de Darcy-Weisbach (adimensional);
- L = comprimento do tubo;
- D = diâmetro do tubo;
- v = velocidade do fluido no tubo;
- g = gravidade (9,81 m/s2).
Infelizmente, na época de sua
criação, o método usado para a obtenção do fator de atrito não era algo muito
preciso, e somente cerca de 100 anos mais tarde, métodos mais precisos
começaram a aparecer para estimar esse fator de atrito.
![]() |
Foto de Henry Philibert Gaspard Darcy, à esquerda, e de Julius Ludwig Weisbach, à direita. |
Fator de Atrito f
Em 1939, C.F.Colebrook e C.M.White desenvolveram uma equação para calcular o fator de atrito f, sendo a equação conhecida como equação de Colebrook-White:
Em que:
- f = fator de atrito de Darcy-weisbach;
- ε = fator de rugosidade da tubulação;
- D = diâmetro da tubulação;
- Re = número de Reynolds.
Em 1942, baseando-se na equação de Colebrook-White, Lewis Ferry Moody cria um método bem mais simples para a obtenção do fator f, o famoso Gráfico de Moody.
Exercício de aplicação
1)Determine a perda de carga usando a equação de Darcy-Weisbach:
Dados:
- ε = 0,00015 ft = 4,572.10-5m
- L = 100 m
- D = 0,3048 m
- v = 2,00 m/s
- g= 9,81 m/s2
- ρ= 10000 kg/m3
- μ = 1 cP = 10-3 kg/ m s
Cálculo do Número de Reynolds:
$\operatorname{Re}=\frac{Dv\rho }{\mu }\Rightarrow \operatorname{Re}=\frac{\left( 0,3048~~m \right).\left( 2~~m/s \right).\left( 10000~Kg/{{m}^{3}} \right)}{{{10}^{-3}}~Kg/m~s}=6096000$
Cálculo da Rugosidade Relativa:
$\frac{\varepsilon }{D}=\frac{{{4,572.10}^{-5}}m}{0,3048~m}=0,00015$
Analisando o Diagrama de Moody:
Vemos que f é aproximadamente 0,013.
Aplicando a equação de Darcy-Weisbach:
$Lw=f.\frac{L}{D}.\frac{{{v}^{2}}}{2g}\Rightarrow Lw=0,013.\frac{100m}{0,3048m}.\frac{{{\left( 2m/s \right)}^{2}}}{2\left( 9,81m/{{s}^{2}} \right)}=0,8695m$
Referências
- Water Treatment Unit Processes, David W. Hendricks, CRC Press, 2006.
- Projetos Químicos e Petroquímicos, Flávio N. Pereira e Manoel C. Seguim, Editora Comunicar, Santos, SP, 2012.
- Notas de Mecânica dos Fluidos, Pedro Coelho, Santos, São Paulo, 2011.
Sobre o autor

2 Comentários de "Equação de Darcy-Weisbach – Cálculo da Perda de Carga "
Eu somente estou pesquisado pra saber o que diz, onde posso aplicar a equação de Darcy
Olá anônimo
A equação de Darcy pode ser usada para calcular a perda de carga em tubos que transportam fluidos, podendo estes ser líquido ou gás.
Os comentários são sempre bem vindos, pois agregam valor ao artigo. Porém, existem algumas regras na Política de Comentários, que devem ser seguidas para o seu comentário não ser excluído:
- Os comentários devem estar relacionados ao assunto do artigo.
- Jamais faça um comentário com linguagem ofensiva ou de baixo calão, que deprecie o artigo exposto ou que ofenda o autor ou algum leitor do blog.
- Não coloque links de sites ou blogs no corpo do texto do comentário. Para isso, assine com seu Nome/URL ou OpenID.
-Não coloque seu email e nem seu telefone no corpo do texto do comentário. Use o nosso formulário de contato.
- Se encontrar algum pequeno erro na postagem, por favor, seja bem claro no comentário, pois a minha bola de cristal não é muito boa.
- Tem vezes que eu demoro pra responder, mas quase sempre eu respondo.
- Não seja tímido, se você tem alguma duvida ou sabe de algo mais sobre o assunto abordado no artigo, comente e compartilhe conosco :)