-->

Matrizes: Adição, subtração, multiplicação e outras operações

As matrizes são estruturas matemáticas organizadas na forma de tabela com linhas e colunas, utilizadas na organização de dados e informações. As matrizes são responsáveis pela solução de sistemas lineares. Elas podem ser construídas com “m” linhas e “n” colunas, por exemplo:
matrizes de ordem 2x3 e 3x2
matrizes de ordem 2x3 e 3x2

Adição de Matrizes


A adição de matrizes é uma operação que só pode ser feita por matrizes do mesmo tipo com o mesmo número de linhas e colunas, sendo que nessa operação nós simplesmente somamos os elementos correspondentes de A e B.

Exemplos:

1) Determine a soma das matrizes A e B:

matriz a e b exemplo a
Resolução:
soma da matriz a e b

matriz a e b exemplo b
Resolução:

adição da matriz a e b exemplo b

Subtração ou diferença de matrizes


A subtração de matrizes é uma operação que só pode ser feita por matrizes do mesmo tipo com o mesmo número de linhas e colunas, sendo que nessa operação nós simplesmente subtraímos os elementos correspondentes de A e B.

Exemplos:

1) Determine a diferença entre as matrizes A e B:

matriz a e b exemplo a2
Resolução:
subtração da matriz a e b  exemplo a2
matriz a e b exemplo b2
Resolução
diferença da matriz a e b exemplo b2

Multiplicação ou Produto de Matrizes


A multiplicação de matrizes é um processo que pode ser feito somente quando o número de colunas da primeira matriz é igual ao número de linhas da segunda matriz. Sendo a matriz A do tipo “mxn” e a matriz B do tipo “nxp”, e o produto da operação uma matriz “mxp”, que pode ser chamada AB ou de C.

Exemplo:

1) Dado A e B, determine AB:


multiplicação de matrizes


Multiplicando uma linha por uma coluna:

multiplicando as matrizes


Inversão de matrizes quadradas


A inversão de matrizes é uma operação que só pode ser feita em matrizes quadradas, ou seja, matrizes 2x2, 3x3 e por ai em diante. A definição dessa operação é dada por:

$A.{{A}^{-1}}=I$

Sendo:
  • A a matriz A;
  • ${{A}^{-1}}$ a inversa de A;
  • I a matriz identidade, que é uma matriz quadrada, que possui o mesmo número de linhas e colunas, onde todos os elementos da diagonal principal são 1 e os demais elementos da matriz são 0.
Exemplo:

1) Ache a inversa da matriz abaixo:
matriz a
Resolução:

calculando a inversa da matriz a
Multiplicando as linhas da matriz A pelas colunas de sua inversa, e igualando aos elementos da matriz identidade temos:

sistema de equações

Resolvendo esse sistema de equações, temos:

$a=4,~~d=-7,~~c=3,~~f=-5$

Logo:
matriz inversa de a

Transposta de uma matriz


A transposta de uma matriz (também chamada de matriz transposta) é a troca de suas linhas por colunas.

Exemplo:


transposta de uma matriz

Sistemas lineares (Escalonamento de Matrizes)


O escalonamento de matrizes é um processo onde você transforma um sistema linear em uma matriz, para obter o valor das incógnitas desse sistema.

Exemplo:
sistemas de lineares
Transformando o sistema em matrizes:

transformando o sistema linear em matriz


Para escalonarmos essa matriz, devemos primeiramente zerar o primeiro elemento da segunda e da terceira linha, sendo que para isso, iremos somar os itens da segunda e da terceira com o resultado da multiplicação do oposto do primeiro item - da segunda e da terceira linha -, pelos elementos da primeira linha.

fazendo o escalonamento

Com isso, obtemos a segunda e a terceira equação.

obtendo as equações

Logo, resolvendo esse sistema de equações:

$-2y+1z=1\Rightarrow z=2y+1$

Substituindo z na terceira equação:

$-19y-11\left( 2y+1 \right)=-52\Rightarrow -19y-22y-11=-52\Rightarrow $

$\Rightarrow -19y-22y-11=-52\Rightarrow -41y=-41\Rightarrow y=1$

Logo:

$z=2\left( 1 \right)+1=3$

Agora substituindo esses valores em uma das equações do sistema para encontrar o valor x. Nessa demonstração, eu vou substituir na primeira.

$x+5y+3z=16\Rightarrow x+5\left( 1 \right)+3\left( 3 \right)=16\Rightarrow $

$\Rightarrow x+5+9=16\Rightarrow x=2$

Propriedades de matriz


Reforçando um pouco a postagem com algumas propriedades das matrizes = )

$1){{\left( {{A}^{T}} \right)}^{T}}=A;~~{{\left( {{A}^{-1}} \right)}^{-1}}=A$

$2){{\left( {{A}^{T}} \right)}^{-1}}\acute{e}~~o~~mesmo~~que~{{\left( {{A}^{-1}} \right)}^{T}}$

$3){{\left( A.B \right)}^{T}}={{B}^{T}}.{{A}^{T}}~;~~{{\left( A.B \right)}^{-1}}={{B}^{-1}}.{{A}^{-1}}$

$4){{A}^{-1}}.A=I$

$5)A.{{A}^{-1}}=I$

Listas de Exercicios Resolvidos de Matrizes



Referências

  • Notas de Cálculo Numérico, Profº Joaquim, Unisanta, Santos, São Paulo, 2011. 
  • Notas de Cálculo Numérico, Pedro Coelho, Santos, São Paulo, 2011. 
  • Elementos de cálculo numérico 2°Edição, Dirceu Douglas Salvetti, Companhia Editora Nacional, São Paulo, Brasil, 1976.

Sobre o autor


Pedro Coelho Olá meu nome é , eu sou engenheiro químico, engenheiro de segurança do trabalho e Green Belt em Lean Six Sigma. Além disso, também sou estudante de engenharia civil, e em parte de minhas horas vagas me dedico a escrever artigos aqui no ENGQUIMICASANTOSSP, para ajudar estudantes de Engenharia Química e de áreas correlatas. Se você está curtindo essa postagem, siga-nos através de nossas paginas nas redes sociais e compartilhe com seus amigos para eles curtirem também :)

8 Comentários de "Matrizes: Adição, subtração, multiplicação e outras operações"

Carla Souza
7 de dezembro de 2016 às 06:52

Muito bom,claro e objetivo. Parabéns.

Anônimo
19 de agosto de 2017 às 12:48

mt bommmmmmmmmm

Unknown
17 de outubro de 2017 às 16:38

Excelente explicação principalmente pra alunas como eu que estão boiando na aula.

Unknown
18 de junho de 2018 às 20:08

Muito bom, bem explicado

Unknown
9 de maio de 2019 às 10:44

Não entendo muito sobre esses assuntos matemáticos você poderia me explica com mas clareza se pode agradeço

Pedro Coelho
12 de maio de 2019 às 15:24

Olá anônimo

Me desculpa pela demora, o que você não está conseguindo entender?

Vânia Malta
27 de novembro de 2019 às 23:59

Bem explicado parabéns!

Unknown
13 de dezembro de 2022 às 21:06

Amanhã vou fazer prova final tô com muito medo de fica de ano,mais valeu por ensina bem

Os comentários são sempre bem vindos, pois agregam valor ao artigo. Porém, existem algumas regras na Política de Comentários, que devem ser seguidas para o seu comentário não ser excluído:
- Os comentários devem estar relacionados ao assunto do artigo.
- Jamais faça um comentário com linguagem ofensiva ou de baixo calão, que deprecie o artigo exposto ou que ofenda o autor ou algum leitor do blog.
- Não coloque links de sites ou blogs no corpo do texto do comentário. Para isso, assine com seu Nome/URL ou OpenID.
-Não coloque seu email e nem seu telefone no corpo do texto do comentário. Use o nosso formulário de contato.
- Se encontrar algum pequeno erro na postagem, por favor, seja bem claro no comentário, pois a minha bola de cristal não é muito boa.
- Tem vezes que eu demoro pra responder, mas quase sempre eu respondo.
- Não seja tímido, se você tem alguma duvida ou sabe de algo mais sobre o assunto abordado no artigo, comente e compartilhe conosco :)

Back To Top